Optical forces in hybrid plasmonic waveguides.

نویسندگان

  • Xiaodong Yang
  • Yongmin Liu
  • Rupert F Oulton
  • Xiaobo Yin
  • Xiang Zhang
چکیده

We demonstrate that in a hybrid plasmonic system the optical force exerted on a dielectric waveguide by a metallic substrate is enhanced by more than 1 order of magnitude compared to the force between a photonic waveguide and a dielectric substrate. A nanoscale gap between the dielectric waveguide and the metallic substrate leads to deep subwavelength optical energy confinement with ultralow mode propagation loss and hence results in the enhanced optical forces at low input optical power, as numerically demonstrated by both Maxwell's stress tensor formalism and the coupled mode theory analysis. Moreover, the hybridization between the surface plasmon modes and waveguide modes allows efficient optical trapping of single dielectric nanoparticle with size of only several nanometers in the gap region, manifesting various optomechanical applications such as nanoscale optical tweezers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Simulation of a Metal-Insulator-Metal Filter Based on Plasmonic Split Ring

In this paper, a plasmonic filter made of a split ring, two U-shaped structures and two straight waveguides is designed and investigated. In the proposed structure, the split ring and U-shaped structures are situated between straight waveguides. Simulations are done based on FDTD method. Split ring, U-shaped structures and straight waveguides are made of air in the silver background. In the pro...

متن کامل

Degenerate four-wave mixing in silicon hybrid plasmonic waveguides.

Silicon-based plasmonic waveguides show high confinement well beyond the diffraction limit. Various devices have been demonstrated to outperform their dielectric counterparts at micrometer scales, such as linear modulators, capable of generating high field confinement and improving device efficiency by increasing access to nonlinear processes, limited by ohmic losses. By using hybridized plasmo...

متن کامل

Sensitive method for measuring third order nonlinearities in compact dielectric and hybrid plasmonic waveguides.

We demonstrate a sensitive method for the nonlinear optical characterization of micrometer long waveguides, and apply it to typical silicon-on-insulator nanowires and to hybrid plasmonic waveguides. We demonstrate that our method can detect extremely small nonlinear phase shifts, as low as 7.5·10<(-4) rad. The high sensitivity achieved imparts an advantage when investigating the nonlinear behav...

متن کامل

Plasmonic Amplification with Ultra-High Optical Gain at Room Temperature

Nanoplasmonic devices are promising for next generation information and communication technologies because of their capability to confine light at subwavelength scale and transport signals with ultrahigh speeds. However, ohmic losses are inherent to all plasmonic devices so that further development of integrated plasmonics requires efficient in situ loss compensation of signals with a wavelengt...

متن کامل

High Performance Sub-Diffraction Limit Three Channel Plasmonic Demultiplexer

We have proposed a new ultra-compact optical demultiplexer based on metal-insulator-metal plasmonic waveguides aperture-coupled to the ring resonators. Our proposed device has high performance, small footprint, and high potential for integration and development to more channels.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2011